Archaeal RadA protein binds DNA as both helical filaments and octameric rings.

نویسندگان

  • S Yang
  • X Yu
  • E M Seitz
  • S C Kowalczykowski
  • E H Egelman
چکیده

The Escherichia coli RecA protein has been a model for understanding homologous eukaryotic recombination proteins such as Rad51. The active form of both RecA and Rad51 appear to be helical filaments polymerized on DNA, in which an unusual helical structure is induced in the DNA. Surprisingly, the human meiosis-specific homolog of RecA, Dmc1, has thus far only been observed to bind DNA as an octameric ring. Sequence analysis and biochemical studies have shown that archaeal RadA proteins are more closely related to Rad51 and Dmc1 than the bacterial RecA proteins. We find that the Sulfolobus solfataricus RadA protein binds DNA in the absence of nucleotide cofactor as an octameric ring and in the presence of ATP as a helical filament. Since it is likely that RadA is closely related to a common ancestral protein of both Rad51 and Dmc1, the two DNA-binding forms of RadA may provide insight into the divergence that has taken place between Rad51 and Dmc1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Dmc1 protein binds DNA as an octameric ring.

The bacterial RecA protein has been the most intensively studied enzyme in homologous genetic recombination. The core of RecA is structurally homologous to that of the F1-ATPase and helicases. Like the F1-ATPase and ring helicases, RecA forms a hexameric ring. The human Dmc1 (hDmc1) protein, a meiosis-specific recombinase, is homologous to RecA. We show that hDmc1 forms octameric rings. Unlike ...

متن کامل

Crystal structure of the left-handed archaeal RadA helical filament: identification of a functional motif for controlling quaternary structures and enzymatic functions of RecA family proteins

The RecA family of proteins mediates homologous recombination, an evolutionarily conserved pathway that maintains genomic stability by protecting against DNA double strand breaks. RecA proteins are thought to facilitate DNA strand exchange reactions as closed-rings or as right-handed helical filaments. Here, we report the crystal structure of a left-handed Sulfolobus solfataricus RadA helical f...

متن کامل

Three New Structures of Left-Handed RadA Helical Filaments: Structural Flexibility of N-Terminal Domain Is Critical for Recombinase Activity

RecA family proteins, including bacterial RecA, archaeal RadA, and eukaryotic Dmc1 and Rad51, mediate homologous recombination, a reaction essential for maintaining genome integrity. In the presence of ATP, these proteins bind a single-strand DNA to form a right-handed nucleoprotein filament, which catalyzes pairing and strand exchange with a homologous double-stranded DNA (dsDNA), by as-yet un...

متن کامل

Structural and Functional Analyses of Five Conserved Positively Charged Residues in the L1 and N-Terminal DNA Binding Motifs of Archaeal RadA Protein

RecA family proteins engage in an ATP-dependent DNA strand exchange reaction that includes a ssDNA nucleoprotein helical filament and a homologous dsDNA sequence. In spite of more than 20 years of efforts, the molecular mechanism of homology pairing and strand exchange is still not fully understood. Here we report a crystal structure of Sulfolobus solfataricus RadA overwound right-handed filame...

متن کامل

Calcium stiffens archaeal Rad51 recombinase from Methanococcus voltae for homologous recombination.

Archaeal RadA or Rad51 recombinases are close homologues of eukaryal Rad51 and DMC1. These and bacterial RecA orthologues play a key role in DNA repair by forming helical nucleoprotein filaments in which a hallmark strand exchange reaction between homologous DNA substrates occurs. Recent studies have discovered the stimulatory role by calcium on human and yeast recombinases. Here we report that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 314 5  شماره 

صفحات  -

تاریخ انتشار 2001